
IoT Distance Measurement and Alert
System with Adafruit IO Integration

Gustavo Kang Shim

T00659719

Computer Science

Thompson Rivers University

September 23rd, 2023

Anthony

Computer Science

Thompson Rivers University

805 University Drive

Kamloops, BC, V2C6N2

Table of Contents

Table of Contents 2
Chapter 1 - Project Overview 3

Objective 3
Context and Significance 3
Key Components Needed: 3
Project Description: 4

1. Setup the Hardware: 4
2. Adafruit IO Setup: 5
3. Programming: 5
3. Testing & Feedback: 8
Deliverables: 8

Chapter 2 - Project Results and Observations 9
Challenges: 9
Enhancements for the Project: 9

Chapter 3 - Conclusion 9
References: 9

Chapter 1 - Project Overview

Objective
The objective of this project is to make utilization of the HC-SR04 Ultrasonic Sensor,

Adafruit IO (The interface that connects a Raspberry Pi component to a Dashboard), and a
buzzer. With the components, develop a script to measure the distances that the Ultrasonic
sensor captures and utilize this to measure the distance, alert based on thresholds and
display a real-time distance in the UI itself.

Context and Significance
The Internet of Things (IoT) has become an integral part of modern technology,

offering a vast array of applications that impact our daily lives. This project aligns with the
significance of IoT, as it demonstrates a practical use case where IoT devices can enhance
automation and control in various environments.

In this project, we leverage the capabilities of an HC-SR04 Ultrasonic Sensor to
collect real-time distance data. On top of that, we further optimized it and included this in the
Adafruit IO, sending data straight to its dashboard. We use this data to control the Buzzer’s
beep alerts based on the thresholds. The significance of this project lies in its real-world
applications, including:

- Smart Parking Management: Use the HC-SR04 sensors to monitor parking space
availability in a parking lot. The real-time data can be sent to an application or digital
signage, helping drivers find vacant parking spots quickly.

- Industrial Equipment Safety: Implement the system in an industrial setting to monitor
the distance between moving machinery and human operators. If someone gets too
close, the system can trigger alerts and halt machinery to prevent accidents.

- IoT-Based Home Security: Utilize the sensor to detect the presence of individuals
near entry points of a home. It can be part of a home security system that alerts
homeowners of any unauthorized access attempts.

- Waste Bin Management: Install the sensors in waste bins to monitor their fill levels.
When the bins reach a specific capacity, the system can trigger alerts to waste
management companies, optimizing collection routes and reducing unnecessary
pickups.

Key Components Needed:
● Raspberry Pi
● HC-SR04 Ultrasonic Distance Sensor
● Adafruit IO account
● Jumper wires
● Resistors (330Ω and 470Ω)
● Buzzer

Project Description:
This project involves a Raspberry Pi and an HC-SR04 Ultrasonic Distance Sensor to
measure distances. The measured distance values will be transmitted to Adafruit IO, where
we can monitor and visualize the data in real-time on a custom dashboard. Additionally, we
will set up a buzzer alarm to respond to specific distance thresholds.

1. Setup the Hardware:
● Connect the HC-SR04 module to the Raspberry Pi as follows:

○ VCC to Pin 2 (VCC) on the Raspberry Pi
○ GND to Pin 6 (GND) on the Raspberry Pi
○ TRIG to Pin 12 (GPIO18) on the Raspberry Pi
○ Connect a 330Ω resistor to the ECHO pin of the HC-SR04 module.
○ Connect the other end of the 330Ω resistor to Pin 18 (GPIO24) on the

Raspberry Pi.
○ Connect a 470Ω resistor to the same end of the 330Ω resistor.
○ Connect the other end of the 470Ω resistor to Pin 6 (GND) on the
○ Raspberry Pi.

● Connect a buzzer to an available GPIO pin on the Raspberry Pi.

2. Adafruit IO Setup:

○ Create an Adafruit IO account if you don't have one.
○ Set up a new feed on Adafruit IO to receive distance data.
○ Create a custom dashboard and add widgets to display distance

measurements and control the buzzer.

3. Programming:

● Modify the existing Python script to include Adafruit IO integration.
● Use the Adafruit IO Python library to send distance data to the feed.
● Implement logic to trigger the buzzer based on predefined distance

thresholds.
● Set up distance thresholds for "Far" and "Close" alerts.
● Configure the buzzer to activate when the distance falls within these

thresholds.
● Customize the buzzer's behaviour, such as the sound pattern or duration.

"""

Oct 10th, 2023

Authors: Gustavo Kang Shim, Zion Chong, Gregorson Mahon, Kenichi Shihota,

Thien Le, Yana Narula

Objective: The objective of this project is to make utilization of the

HC-SR04 Ultrasonic Sensor,

Adafruit IO (The interface that connects a Raspberry Pi component to a

Dashboard), and a buzzer.

With the components, develop a script to measure the distances

that the Ultrasonic sensor captures and utilize this to measure the

distance,

alert based on thresholds and display a real-time distance in the UI itself.

"""

Libraries

import RPi.GPIO as GPIO

import time

import digitalio

import board

from gpiozero import Buzzer

import Adafruit IO REST client.

from Adafruit_IO import Client, Feed, RequestError

Set to your Adafruit IO key.

Remember, your key is a secret,

so make sure not to publish it when you publish this code!

ADAFRUIT_IO_KEY = "aio_FEQN39S5rQB59DM0yhJ9DX8eNPI9"

Set to your Adafruit IO username.

(go to https://accounts.adafruit.com to find your username)

ADAFRUIT_IO_USERNAME = "team49805"

aio = Client(ADAFRUIT_IO_USERNAME, ADAFRUIT_IO_KEY)

try: # if we have a 'as3' and 'as3-but' feed

test = aio.feeds('as3')

test2 = aio.feeds('as3-but')

except RequestError: # create a digital feed

feed = Feed(name="as3")

feed2 = Feed(name="as3-but")

test = aio.create_feed(feed)

test2 = aio.create_feed(feed2)

GPIO Mode (BOARD / BCM)

GPIO.setmode(GPIO.BCM)

Set GPIO Pins (Connecting Hardware to Code)

GPIO_TRIGGER = 18

GPIO_ECHO = 24

Set GPIO direction (IN / OUT)

GPIO.setup(GPIO_TRIGGER, GPIO.OUT)

GPIO.setup(GPIO_ECHO, GPIO.IN)

def distance(): # this function measures the distance of each iteration

based on the value given by the Ultrasonic Sensor

#Set Trigger to HIGH

GPIO.output(GPIO_TRIGGER, True)

#Set Trigger after 0.01ms to LOW

time.sleep(0.00001)

GPIO.output(GPIO_TRIGGER, False)

StartTime = time.time()

StopTime = time.time()

#Save StartTime

while GPIO.input(GPIO_ECHO) == 0:

StartTime = time.time()

#Save time of arrival

while GPIO.input(GPIO_ECHO) == 1:

StopTime = time.time()

#Time difference between start and arrival

TimeElapsed = StopTime - StartTime

#Multiply with the sonic speed (34300 cm/s) and divide by 2, because there

and back

distance = (TimeElapsed * 34300) / 2

return distance

Main

if __name__ == '__main__':

try and except to avoid error by CTRL+C in terminal

try:

GPIO to Code for buzzer

buzzer = Buzzer(25)

while True:

Measure the distance

dist = distance()

print("Measured Distance = %.1f cm" % dist)

based on the button value in Adafruit IO (value in this case is data)

data = aio.receive(test2.key)

if button off

if data.value == '0':

print("Buzzer Off")

elif data.value == '1':

Threshold 1: if more than 40cm away buzz 3 times

if dist > 40:

print("Far 3 buzz")

buzzer.on()

time.sleep(0.5)

buzzer.off()

time.sleep(0.5)

buzzer.on()

time.sleep(0.5)

buzzer.off()

time.sleep(0.5)

buzzer.on()

time.sleep(0.5)

buzzer.off()

Threshold 2: if more than 20cm away buzz 2 times

elif dist > 20:

print("2 buzz")

buzzer.on()

time.sleep(0.5)

buzzer.off()

time.sleep(0.5)

buzzer.on()

time.sleep(0.5)

buzzer.off()

Threshold 3: if closer to less than 20cm buzz once

else:

print("Close 1 buzz")

buzzer.on()

time.sleep(2)

buzzer.off()

time.sleep(3)

dist = round(dist,1)

aio.send_data(test.key, str(dist) + "cm")

#Reset by pressing CTRL + C

except KeyboardInterrupt:

print("Measurement stopped by User")

GPIO.cleanup()

3. Testing & Feedback:
● Test the entire system to ensure distance measurements are accurately

transmitted to Adafruit IO.
● Calibrate the system if necessary to improve measurement accuracy and alert

responsiveness.

Deliverables:
● You MUST demonstrate your working IoT Distance Measurement and Alert

System with Adafruit IO Integration setup to your instructor.
● Submit your project report before the deadline (no extensions except for

reasons stated in the course outline, e.g., with a medical report).
● Your individual report must be entirely original, as its authenticity will be

verified using standard tools for confirmation.

Chapter 2 - Project Results and Observations

Challenges:
● Overcoming challenges related to the limited documentation in the Adafruit module.
● Overcoming the Adafruit IO and Code Connection
● Debugging complexities in the IoT environment, require more time than traditional

coding.
● Managing the electrical components and addressing issues in the hardware

connections.
● Ensuring reliable readings from the Ultrasonic Sensor.

Enhancements for the Project:
● Implement an event listener to improve the responsiveness and smoothness of the

Adafruit interface.
● Organize the hardware setup for better cable management and reliability.
● Improve documentation and resources for working with the Adafruit module to make

it more accessible for future projects.

Chapter 3 - Conclusion
Moving Forward: In conclusion, the project achieved its objective by successfully getting
data from the Ultrasonic sensor. The project provided valuable learning experiences in both
hardware and software development within the IoT domain. Going forward, we aim to
enhance the project's responsiveness and organization for future applications.

References:
● Raspberry Pi Documentation
● Anthony from 4980 IoT class.

https://www.raspberrypi.com/documentation/

